Note: If you are viewing on a phone or tablet, it will be easier to read if you rotate into landscape so that the units will appear next to the variables instead of below them.

## Translational

## Rotational

#### Displacement

\Large \mathrm{\, \, \, \vec{r}, \, x, \, y, \, z}

\mathrm{[m]}

\Large \mathrm{\theta}

\mathrm{[radians] \, or \, [rad]}

#### Speed/Velocity

\Large \mathrm{\vec{v}}

\Large \mathrm{[ \frac{m}{s}]}

\Large \mathrm{\vec{\omega}}

\Large \mathrm{[\frac{rad}{s}]}

#### Acceleration

\Large \mathrm{\vec{a}}

\Large \mathrm{[\frac{m}{s^2}]}

\Large \mathrm{\vec{\alpha}}

\Large \mathrm{[\frac{rad}{s^2}]}

#### Force

#### Torque

\Large \mathrm{\vec{F}}

\mathrm{[N] \, or \,} \Large \mathrm{[\frac{kg \cdot m}{s^2}]}

\Large \mathrm{\vec{\tau}}

\mathrm{[N \cdot m]}

#### Mass

#### Rotational Inertia

\Large \mathrm{m}

\mathrm{[kg]}

\Large \mathrm{I}

\mathrm{[kg \cdot m^2]}

#### Linear (Translational) Momentum

#### Angular Momentum

\Large \mathrm{\vec{p}}

\Large \mathrm{[\frac{kg \cdot m}{s}]}

\Large \mathrm{\vec{L}}

\Large \mathrm{[\frac{kg \cdot m^2}{s}]}

The right side has some additional variables that apply to rotational motion.

#### Kinetic Energy

#### Frequency

\Large \mathrm{K \, \, or \, \, KE}

\mathrm{[J] \, or \, [N \cdot m] \, or \,} \Large \mathrm{[\frac{kg \cdot m^2}{s^2}]}

\Large f \, \, \mathrm{or} \, \, \nu

\mathrm{[Hz] \, or \, [cps] \, or \, [s^{-1}] \, or \, } \Large \mathrm{[\frac{1}{s}]}

#### Potential Energy

#### Period

\Large \mathrm{U \, \, or \, \, PE}

\mathrm{[J] \, or \, [N \cdot m] \, or \,} \Large \mathrm{[\frac{kg \cdot m^2}{s^2}]}

\Large \mathrm{T}

\Large \mathrm{[s]}

#### Work

#### Radius

(Distance from Center of Mass “CM”)

\Large \mathrm{W}

\mathrm{[J] \, or \, [N \cdot m] \, or \,} \Large \mathrm{[\frac{kg \cdot m^2}{s^2}]}

\Large \mathrm{R}

\mathrm{[m]}

#### Impulse

\Large \mathrm{\vec{J}}

\mathrm{[N \cdot s] \, \, or \, \,} \Large \mathrm{[\frac{kg \cdot m}{s}]}

#### Power

\Large \mathrm{P}

\mathrm{[W] \, \, or \, \, } \Large \mathrm{[\frac{J}{s}]} \mathrm{\, \, or \, \,} \Large \mathrm{[\frac{kg \cdot m^2}{s^3}]}